RFC2661 - Layer Two Tunneling Protocol L2TP
时间:2023-11-16 19:52:57
来源:网络
浏览:52次
Network Working Group W. Townsley
Request for Comments: 2661 A. Valencia
Category: Standards Track cisco Systems
A. Rubens
Ascend Communications
G. Pall
G. Zorn
Microsoft Corporation
B. Palter
Redback Networks
August 1999
Layer Two Tunneling Protocol "L2TP"
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
This document describes the Layer Two Tunneling Protocol (L2TP). STD
51, RFC1661 specifies multi-protocol Access via PPP [RFC1661]. L2TP
facilitates the tunneling of PPP packets across an intervening
network in a way that is as transparent as possible to both end-users
and applications.
Table of Contents
1.0 IntrodUCtion.......................................... 3
1.1 Specification of Requirements......................... 4
1.2 Terminology........................................... 4
2.0 Topology.............................................. 8
3.0 Protocol Overview..................................... 9
3.1 L2TP Header Format.................................... 9
3.2 Control Message Types................................. 11
4.0 Control Message Attribute Value Pairs................. 12
4.1 AVP Format............................................ 13
4.2 Mandatory AVPs........................................ 14
4.3 Hiding of AVP Attribute Values........................ 14
4.4 AVP Summary........................................... 17
4.4.1 AVPs Applicable To All Control Messages.......... 17
4.4.2 Result and Error Codes........................... 18
4.4.3 Control Connection Management AVPs............... 20
4.4.4 Call Management AVPs............................. 27
4.4.5 Proxy LCP and Authentication AVPs................ 34
4.4.6 Call Status AVPs................................. 39
5.0 Protocol Operation.................................... 41
5.1 Control Connection Establishment...................... 41
5.1.1 Tunnel Authentication............................ 42
5.2 Session Establishment................................. 42
5.2.1 Incoming Call Establishment...................... 42
5.2.2 Outgoing Call Establishment...................... 43
5.3 Forwarding PPP Frames................................. 43
5.4 Using Sequence Numbers on the Data Channel............ 44
5.5 Keepalive (Hello)..................................... 44
5.6 Session Teardown...................................... 45
5.7 Control Connection Teardown........................... 45
5.8 Reliable Delivery of Control Messages................. 46
6.0 Control Connection Protocol Specification............. 48
6.1 Start-Control-Connection-Request (SCCRQ).............. 48
6.2 Start-Control-Connection-Reply (SCCRP)................ 48
6.3 Start-Control-Connection-Connected (SCCCN)............ 49
6.4 Stop-Control-Connection-Notification (StopCCN)........ 49
6.5 Hello (HELLO)......................................... 49
6.6 Incoming-Call-Request (ICRQ).......................... 50
6.7 Incoming-Call-Reply (ICRP)............................ 51
6.8 Incoming-Call-Connected (ICCN)........................ 51
6.9 Outgoing-Call-Request (OCRQ).......................... 52
6.10 Outgoing-Call-Reply (OCRP)........................... 53
6.11 Outgoing-Call-Connected (OCCN)....................... 53
6.12 Call-Disconnect-Notify (CDN)......................... 53
6.13 WAN-Error-Notify (WEN)............................... 54
6.14 Set-Link-Info (SLI).................................. 54
7.0 Control Connection State Machines..................... 54
7.1 Control Connection Protocol Operation................. 55
7.2 Control Connection States............................. 56
7.2.1 Control Connection Establishment................. 56
7.3 Timing considerations................................. 58
7.4 Incoming calls........................................ 58
7.4.1 LAC Incoming Call States......................... 60
7.4.2 LNS Incoming Call States......................... 62
7.5 Outgoing calls........................................ 63
7.5.1 LAC Outgoing Call States......................... 64
7.5.2 LNS Outgoing Call States......................... 66
7.6 Tunnel Disconnection.................................. 67
8.0 L2TP Over Specific Media.............................. 67
8.1 L2TP over UDP/IP...................................... 68
8.2 IP.................................................... 69
9.0 Security Considerations............................... 69
9.1 Tunnel Endpoint Security.............................. 70
9.2 Packet Level Security................................. 70
9.3 End to End Security................................... 70
9.4 L2TP and IPsec........................................ 71
9.5 Proxy PPP Authentication.............................. 71
10.0 IANA Considerations.................................. 71
10.1 AVP Attributes....................................... 71
10.2 Message Type AVP Values.............................. 72
10.3 Result Code AVP Values............................... 72
10.3.1 Result Code Field Values........................ 72
10.3.2 Error Code Field Values......................... 72
10.4 Framing Capabilities & Bearer Capabilities........... 72
10.5 Proxy Authen Type AVP Values......................... 72
10.6 AVP Header Bits...................................... 73
11.0 References........................................... 73
12.0 Acknowledgments...................................... 74
13.0 Authors" Addresses................................... 75
Appendix A: Control Channel Slow Start and Congestion
Avoidance..................................... 76
Appendix B: Control Message Examples...................... 77
Appendix C: Intellectual Property Notice.................. 79
Full Copyright Statement.................................. 80
1.0 Introduction
PPP [RFC1661] defines an encapsulation mechanism for transporting
multiprotocol packets across layer 2 (L2) point-to-point links.
Typically, a user oBTains a L2 connection to a Network Access Server
(NAS) using one of a number of techniques (e.g., dialup POTS, ISDN,
ADSL, etc.) and then runs PPP over that connection. In such a
configuration, the L2 termination point and PPP session endpoint
reside on the same physical device (i.e., the NAS).
L2TP extends the PPP model by allowing the L2 and PPP endpoints to
reside on different devices interconnected by a packet-switched
network. With L2TP, a user has an L2 connection to an access
concentrator (e.g., modem bank, ADSL DSLAM, etc.), and the
concentrator then tunnels individual PPP frames to the NAS. This
allows the actual processing of PPP packets to be divorced from the
termination of the L2 circuit.
One obvious benefit of such a separation is that instead of requiring
the L2 connection terminate at the NAS (which may require a
long-distance toll charge), the connection may terminate at a (local)
circuit concentrator, which then extends the logical PPP session over
a shared infrastructure such as frame relay circuit or the Internet.
From the user"s perspective, there is no functional difference between
having the L2 circuit terminate in a NAS directly or using L2TP.
L2TP may also solve the multilink hunt-group splitting problem.
Multilink PPP [RFC1990] requires that all channels composing a
multilink bundle be grouped at a single Network Access Server (NAS).
Due to its ability to project a PPP session to a location other than
the point at which it was physically received, L2TP can be used to
make all channels terminate at a single NAS. This allows multilink
operation even when the calls are spread across distinct physical
NASs.
This document defines the necessary control protocol for on-demand
creation of tunnels between two nodes and the accompanying
encapsulation for multiplexing multiple, tunneled PPP sessions.
1.1 Specification of Requirements
The key Words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.2 Terminology
Analog Channel
A circuit-switched communication path which is intended to carry
3.1 kHz audio in each direction.
Attribute Value Pair (AVP)
The variable length concatenation of a unique Attribute
(represented by an integer) and a Value containing the actual
value identified by the attribute. Multiple AVPs make up Control
Messages which are used in the establishment, maintenance, and
teardown of tunnels.
Call
A connection (or attempted connection) between a Remote System and
LAC. For example, a telephone call through the PSTN. A Call
(Incoming or Outgoing) which is successfully established between a
Remote System and LAC results in a corresponding L2TP Session
within a previously established Tunnel between the LAC and LNS.
(See also: Session, Incoming Call, Outgoing Call).
Called Number
An indication to the receiver of a call as to what telephone
number the caller used to reach it.
Calling Number
An indication to the receiver of a call as to the telephone number
of the caller.
CHAP
Challenge Handshake Authentication Protocol [RFC1994], a PPP
cryptographic challenge/response authentication protocol in which
the cleartext password is not passed over the line.
Control Connection
A control connection operates in-band over a tunnel to control the
establishment, release, and maintenance of sessions and of the
tunnel itself.
Control Messages
Control messages are exchanged between LAC and LNS pairs,
operating in-band within the tunnel protocol. Control messages
govern ASPects of the tunnel and sessions within the tunnel.
Digital Channel
A circuit-switched communication path which is intended to carry
digital information in each direction.
DSLAM
Digital Subscriber Line (DSL) Access Module. A network device used
in the deployment of DSL service. This is typically a concentrator
of individual DSL lines located in a central Office (CO) or local
exchange.
Incoming Call
A Call received at an LAC to be tunneled to an LNS (see Call,
Outgoing Call).
L2TP Access Concentrator (LAC)
A node that acts as one side of an L2TP tunnel endpoint and is a
peer to the L2TP Network Server (LNS). The LAC sits between an
LNS and a remote system and forwards packets to and from each.
Packets sent from the LAC to the LNS requires tunneling with the
L2TP protocol as defined in this document. The connection from
the LAC to the remote system is either local (see: Client LAC) or
a PPP link.
L2TP Network Server (LNS)
A node that acts as one side of an L2TP tunnel endpoint and is a
peer to the L2TP Access Concentrator (LAC). The LNS is the
logical termination point of a PPP session that is being tunneled
from the remote system by the LAC.
Management Domain (MD)
A network or networks under the control of a single
administration, policy or system. For example, an LNS"s Management
Domain might be the corporate network it serves. An LAC"s
Management Domain might be the Internet Service Provider that owns
and manages it.
Network Access Server (NAS)
A device providing local network access to users across a remote
access network such as the PSTN. An NAS may also serve as an LAC,
LNS or both.
Outgoing Call
A Call placed by an LAC on behalf of an LNS (see Call, Incoming
Call).
Peer
When used in context with L2TP, peer refers to either the LAC or
LNS. An LAC"s Peer is an LNS and vice versa. When used in context
with PPP, a peer is either side of the PPP connection.
POTS
Plain Old Telephone Service.
Remote System
An end-system or router attached to a remote access network (i.e.
a PSTN), which is either the initiator or recipient of a call.
Also referred to as a dial-up or virtual dial-up client.
Session
L2TP is connection-oriented. The LNS and LAC maintain state for
each Call that is initiated or answered by an LAC. An L2TP Session
is created between the LAC and LNS when an end-to-end PPP
connection is established between a Remote System and the LNS.
Datagrams related to the PPP connection are sent over the Tunnel
between the LAC and LNS. There is a one to one relationship
between established L2TP Sessions and their associated Calls. (See
also: Call).
Tunnel
A Tunnel exists between a LAC-LNS pair. The Tunnel consists of a
Control Connection and zero or more L2TP Sessions. The Tunnel
carries encapsulated PPP datagrams and Control Messages between
the LAC and the LNS.
Zero-Length Body (ZLB) Message
A control packet with only an L2TP header. ZLB messages are used
for eXPlicitly acknowledging packets on the reliable control
channel.
2.0 Topology
The following diagram depicts a typical L2TP scenario. The goal is to
tunnel PPP frames between the Remote System or LAC Client and an LNS
located at a Home LAN.
[Home LAN]
[LAC Client]----------+
_________ +--[Host]
[LAC]--------- Internet -----[LNS]-----+
__________
__________ :
PSTN
[Remote]-- Cloud
[System] [Home LAN]
___________
______________ +---[Host]
[LAC]------- Frame Relay ---[LNS]-----+
or ATM Cloud
______________ :
The Remote System initiates a PPP connection across the PSTN Cloud to
an LAC. The LAC then tunnels the PPP connection across the Internet,
Frame Relay, or ATM Cloud to an LNS whereby access to a Home LAN is
obtained. The Remote System is provided addresses from the HOME LAN
via PPP NCP negotiation. Authentication, Authorization and Accounting
may be provided by the Home LAN"s Management Domain as if the user
were connected to a Network Access Server directly.
A LAC Client (a Host which runs L2TP natively) may also participate
in tunneling to the Home LAN without use of a separate LAC. In this
case, the Host containing the LAC Client software already has a
connection to the public Internet. A "virtual" PPP connection is then
created and the local L2TP LAC Client software creates a tunnel to
the LNS. As in the above case, Addressing, Authentication,
Authorization and Accounting will be provided by the Home LAN"s
Management Domain.
3.0 Protocol Overview
L2TP utilizes two types of messages, control messages and data
messages. Control messages are used in the establishment, maintenance
and clearing of tunnels and calls. Data messages are used to
encapsulate PPP frames being carried over the tunnel. Control
messages utilize a reliable Control Channel within L2TP to guarantee
delivery (see section 5.1 for details). Data messages are not
retransmitted when packet loss occurs.
+-------------------+
PPP Frames
+-------------------+ +-----------------------+
L2TP Data Messages L2TP Control Messages
+-------------------+ +-----------------------+
L2TP Data Channel L2TP Control Channel
(unreliable) (reliable)
+------------------------------------------------+
Packet Transport (UDP, FR, ATM, etc.)
+------------------------------------------------+
Figure 3.0 L2TP Protocol Structure
Figure 3.0 depicts the relationship of PPP frames and Control
Messages over the L2TP Control and Data Channels. PPP Frames are
passed over an unreliable Data Channel encapsulated first by an L2TP
header and then a Packet Transport such as UDP, Frame Relay, ATM,
etc. Control messages are sent over a reliable L2TP Control Channel
which transmits packets in-band over the same Packet Transport.
Sequence numbers are required to be present in all control messages
and are used to provide reliable delivery on the Control Channel.
Data Messages may use sequence numbers to reorder packets and detect
lost packets.
All values are placed into their respective fields and sent in
network order (high order octets first).
3.1 L2TP Header Format
L2TP packets for the control channel and data channel share a common
header format. In each case where a field is optional, its space does
not exist in the message if the field is marked not present. Note
that while optional on data messages, the Length, Ns, and Nr fields
marked as optional below, are required to be present on all control
messages.
This header is formatted:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
TLxxSxOPxxxx Ver Length (opt)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tunnel ID Session ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Ns (opt) Nr (opt)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Offset Size (opt) Offset pad... (opt)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3.1 L2TP Message Header
The Type (T) bit indicates the type of message. It is set to 0 for a
data message and 1 for a control message.
If the Length (L) bit is 1, the Length field is present. This bit
MUST be set to 1 for control messages.
The x bits are reserved for future extensions. All reserved bits MUST
be set to 0 on outgoing messages and ignored on incoming messages.
If the Sequence (S) bit is set to 1 the Ns and Nr fields are present.
The S bit MUST be set to 1 for control messages.
If the Offset (O) bit is 1, the Offset Size field is present. The O
bit MUST be set to 0 (zero) for control messages.
If the Priority (P) bit is 1, this data message should receive
preferential treatment in its local queuing and transmission. LCP
echo requests used as a keepalive for the link, for instance, should
generally be sent with this bit set to 1. Without it, a temporary
interval of local congestion could result in interference with
keepalive messages and unnecessary loss of the link. This feature is
only for use with data messages. The P bit MUST be set to 0 for all
control messages.
Ver MUST be 2, indicating the version of the L2TP data message header
described in this document. The value 1 is reserved to permit
detection of L2F [RFC2341] packets should they arrive intermixed with
L2TP packets. Packets received with an unknown Ver field MUST be
discarded.
The Length field indicates the total length of the message in octets.
Tunnel ID indicates the identifier for the control connection. L2TP
tunnels are named by identifiers that have local significance only.
That is, the same tunnel will be given different Tunnel IDs by each
end of the tunnel. Tunnel ID in each message is that of the intended
recipient, not the sender. Tunnel IDs are selected and exchanged as
Assigned Tunnel ID AVPs during the creation of a tunnel.
Session ID indicates the identifier for a session within a tunnel.
L2TP sessions are named by identifiers that have local significance
only. That is, the same session will be given different Session IDs
by each end of the session. Session ID in each message is that of the
intended recipient, not the sender. Session IDs are selected and
exchanged as Assigned Session ID AVPs during the creation of a
session.
Ns indicates the sequence number for this data or control message,
beginning at zero and incrementing by one (modulo 2**16) for each
message sent. See Section 5.8 and 5.4 for more information on using
this field.
Nr indicates the sequence number expected in the next control message
to be received. Thus, Nr is set to the Ns of the last in-order
message received plus one (modulo 2**16). In data messages, Nr is
reserved and, if present (as indicated by the S-bit), MUST be ignored
upon receipt. See section 5.8 for more information on using this
field in control messages.
The Offset Size field, if present, specifies the number of octets
past the L2TP header at which the payload data is expected to start.
Actual data within the offset padding is undefined. If the offset
field is present, the L2TP header ends after the last octet of the
offset padding.
3.2 Control Message Types
The Message Type AVP (see section 4.4.1) defines the specific type of
control message being sent. Recall from section 3.1 that this is only
for control messages, that is, messages with the T-bit set to 1.
This document defines the following control message types (see
Section 6.1 through 6.14 for details on the construction and use of
each message):
Control Connection Management
0 (reserved)
1 (SCCRQ) Start-Control-Connection-Request
2 (SCCRP) Start-Control-Connection-Reply
3 (SCCCN) Start-Control-Connection-Connected
4 (StopCCN) Stop-Control-Connection-Notification
5 (reserved)
6 (HELLO) Hello
Call Management
7 (OCRQ) Outgoing-Call-Request
8 (OCRP) Outgoing-Call-Reply
9 (OCCN) Outgoing-Call-Connected
10 (ICRQ) Incoming-Call-Request
11 (ICRP) Incoming-Call-Reply
12 (ICCN) Incoming-Call-Connected
13 (reserved)
14 (CDN) Call-Disconnect-Notify
Error Reporting
15 (WEN) WAN-Error-Notify
PPP Session Control
16 (SLI) Set-Link-Info
4.0 Control Message Attribute Value Pairs
To maximize extensibility while still permitting interoperability, a
uniform method for encoding message types and bodies is used
throughout L2TP. This encoding will be termed AVP (Attribute-Value
Pair) in the remainder of this document.
4.1 AVP Format
Each AVP is encoded as:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
MH rsvd Length Vendor ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Attribute Type Attribute Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
[until Length is reached]...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The first six bits are a bit mask, describing the general attributes
of the AVP.
Two bits are defined in this document, the remaining are reserved for
future extensions. Reserved bits MUST be set to 0. An AVP received
with a reserved bit set to 1 MUST be treated as an unrecognized AVP.
Mandatory (M) bit: Controls the behavior required of an
implementation which receives an AVP which it does not recognize. If
the M bit is set on an unrecognized AVP within a message associated
with a particular session, the session associated with this message
MUST be terminated. If the M bit is set on an unrecognized AVP within
a message associated with the overall tunnel, the entire tunnel (and
all sessions within) MUST be terminated. If the M bit is not set, an
unrecognized AVP MUST be ignored. The control message must then
continue to be processed as if the AVP had not been present.
Hidden (H) bit: Identifies the hiding of data in the Attribute Value
field of an AVP. This capability can be used to avoid the passing of
sensitive data, such as user passwords, as cleartext in an AVP.
Section 4.3 describes the procedure for performing AVP hiding.
Length: Encodes the number of octets (including the Overall Length
and bitmask fields) contained in this AVP. The Length may be
calculated as 6 + the length of the Attribute Value field in octets.
The field itself is 10 bits, permitting a maximum of 1023 octets of
data in a single AVP. The minimum Length of an AVP is 6. If the
length is 6, then the Attribute Value field is absent.
Vendor ID: The IANA assigned "SMI Network Management Private
Enterprise Codes" [RFC1700] value. The value 0, corresponding to
IETF adopted attribute values, is used for all AVPs defined within
this document. Any vendor wishing to implement their own L2TP
extensions can use their own Vendor ID along with private Attribute
values, guaranteeing that they will not collide with any other
vendor"s extensions, nor with future IETF extensions. Note that there
are 16 bits allocated for the Vendor ID, thus limiting this feature
to the first 65,535 enterprises.
Attribute Type: A 2 octet value with a unique interpretation across
all AVPs defined under a given Vendor ID.
Attribute Value: This is the actual value as indicated by the Vendor
ID and Attribute Type. It follows immediately after the Attribute
Type field, and runs for the remaining octets indicated in the Length
(i.e., Length minus 6 octets of header). This field is absent if the
Length is 6.
4.2 Mandatory AVPs
Receipt of an unknown AVP that has the M-bit set is catastrophic to
the session or tunnel it is associated with. Thus, the M bit should
only be defined for AVPs which are absolutely crucial to proper
operation of the session or tunnel. Further, in the case where the
LAC or LNS receives an unknown AVP with the M-bit set and shuts down
the session or tunnel accordingly, it is the full responsibility of
the peer sending the Mandatory AVP to accept fault for causing an
non-interoperable situation. Before defining an AVP with the M-bit
set, particularly a vendor-specific AVP, be sure that this is the
intended consequence.
When an adequate alternative exists to use of the M-bit, it should be
utilized. For example, rather than simply sending an AVP with the M-
bit set to determine if a specific extension exists, availability may
be identified by sending an AVP in a request message and expecting a
corresponding AVP in a reply message.
Use of the M-bit with new AVPs (those not defined in this document)
MUST provide the ability to configure the associated feature off,
such that the AVP is either not sent, or sent with the M-bit not set.
4.3 Hiding of AVP Attribute Values
The H bit in the header of each AVP provides a mechanism to indicate
to the receiving peer whether the contents of the AVP are hidden or
present in cleartext. This feature can be used to hide sensitive
control message data such as user passwords or user IDs.
The H bit MUST only be set if a shared secret exists between the LAC
and LNS. The shared secret is the same secret that is used for tunnel
authentication (see Section 5.1.1). If the H bit is set in any
AVP(s) in a given control message, a Random Vector AVP must also be
present in the message and MUST precede the first AVP having an H bit
of 1.
Hiding an AVP value is done in several steps. The first step is to
take the length and value fields of the original (cleartext) AVP and
encode them into a Hidden AVP Subformat as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length of Original Value Original Attribute Value ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Padding ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length of Original Attribute Value: This is length of the Original
Attribute Value to be obscured in octets. This is necessary to
determine the original length of the Attribute Value which is lost
when the additional Padding is added.
Original Attribute Value: Attribute Value that is to be obscured.
Padding: Random additional octets used to obscure length of the
Attribute Value that is being hidden.
To mask the size of the data being hidden, the resulting subformat
MAY be padded as shown above. Padding does NOT alter the value placed
in the Length of Original Attribute Value field, but does alter the
length of the resultant AVP that is being created. For example, If an
Attribute Value to be hidden is 4 octets in length, the unhidden AVP
length would be 10 octets (6 + Attribute Value length). After hiding,
the length of the AVP will become 6 + Attribute Value length + size
of the Length of Original Attribute Value field + Padding. Thus, if
Padding is 12 octets, the AVP length will be 6 + 4 + 2 + 12 = 24
octets.
Next, An MD5 hash is performed on the concatenation of:
+ the 2 octet Attribute number of the AVP
+ the shared secret
+ an arbitrary length random vector
The value of the random vector used in this hash is passed in the
value field of a Random Vector AVP. This Random Vector AVP must be
placed in the message by the sender before any hidden AVPs. The same
random vector may be used for more than one hidden AVP in the same
message. If a different random vector is used for the hiding of
subsequent AVPs then a new Random Vector AVP must be placed in the
command message before the first AVP to which it applies.
The MD5 hash value is then XORed with the first 16 octet (or less)
segment of the Hidden AVP Subformat and placed in the Attribute Value
field of the Hidden AVP. If the Hidden AVP Subformat is less than 16
octets, the Subformat is transformed as if the Attribute Value field
had been padded to 16 octets before the XOR, but only the actual
octets present in the Subformat are modified, and the length of the
AVP is not altered.
If the Subformat is longer than 16 octets, a second one-way MD5 hash
is calculated over a stream of octets consisting of the shared secret
followed by the result of the first XOR. That hash is XORed with the
second 16 octet (or less) segment of the Subformat and placed in the
corresponding octets of the Value field of the Hidden AVP.
If necessary, this operation is repeated, with the shared secret used
along with each XOR result to generate the next hash to XOR the next
segment of the value with.
The hiding method was adapted from RFC2138 [RFC2138] which was taken
from the "Mixing in the Plaintext" section in the book "Network
Security" by Kaufman, Perlman and Speciner [KPS]. A detailed
explanation of the method follows:
Call the shared secret S, the Random Vector RV, and the Attribute
Value AV. Break the value field into 16-octet chunks p1, p2, etc.
with the last one padded at the end with random data to a 16-octet
boundary. Call the ciphertext blocks c(1), c(2), etc. We will also
define intermediate values b1, b2, etc.
b1 = MD5(AV + S + RV) c(1) = p1 xor b1
b2 = MD5(S + c(1)) c(2) = p2 xor b2
. .
. .
. .
bi = MD5(S + c(i-1)) c(i) = pi xor bi
The String will contain c(1)+c(2)+...+c(i) where + denotes
concatenation.
On receipt, the random vector is taken from the last Random Vector
AVP encountered in the message prior to the AVP to be unhidden. The
above process is then reversed to yield the original value.
4.4 AVP Summary
The following sections contain a list of all L2TP AVPs defined in
this document.
Following the name of the AVP is a list indicating the message types
that utilize each AVP. After each AVP title follows a short
description of the purpose of the AVP, a detail (including a graphic)
of the format for the Attribute Value, and any additional information
needed for proper use of the avp.
4.4.1 AVPs Applicable To All Control Messages
Message Type (All Messages)
The Message Type AVP, Attribute Type 0, identifies the control
message herein and defines the context in which the exact meaning
of the following AVPs will be determined.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Message Type is a 2 octet unsigned integer.
The Message Type AVP MUST be the first AVP in a message,
immediately following the control message header (defined in
section 3.1). See Section 3.2 for the list of defined control
message types and their identifiers.
The Mandatory (M) bit within the Message Type AVP has special
meaning. Rather than an indication as to whether the AVP itself
should be ignored if not recognized, it is an indication as to
whether the control message itself should be ignored. Thus, if the
M-bit is set within the Message Type AVP and the Message Type is
unknown to the implementation, the tunnel MUST be cleared. If the
M-bit is not set, then the implementation may ignore an unknown
message type. The M-bit MUST be set to 1 for all message types
defined in this document. This AVP may not be hidden (the H-bit
MUST be 0). The Length of this AVP is 8.
Random Vector (All Messages)
The Random Vector AVP, Attribute Type 36, is used to enable the
hiding of the Attribute Value of arbitrary AVPs.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Random Octet String ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Random Octet String may be of arbitrary length, although a
random vector of at least 16 octets is recommended. The string
contains the random vector for use in computing the MD5 hash to
retrieve or hide the Attribute Value of a hidden AVP (see Section
4.2).
More than one Random Vector AVP may appear in a message, in which
case a hidden AVP uses the Random Vector AVP most closely
preceding it. This AVP MUST precede the first AVP with the H bit
set.
The M-bit for this AVP MUST be set to 1. This AVP MUST NOT be
hidden (the H-bit MUST be 0). The Length of this AVP is 6 plus the
length of the Random Octet String.
4.4.2 Result and Error Codes
Result Code (CDN, StopCCN)
The Result Code AVP, Attribute Type 1, indicates the reason for
terminating the control channel or session.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Result Code Error Code (opt)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Error Message (opt) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Result Code is a 2 octet unsigned integer. The optional Error
Code is a 2 octet unsigned integer. An optional Error Message can
follow the Error Code field. Presence of the Error Code and
Message are indicated by the AVP Length field. The Error Message
contains an arbitrary string providing further (human readable)
text associated with the condition. Human readable text in all
error messages MUST be provided in the UTF-8 charset using the
Default Language [RFC2277].
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 1. The Length is 8 if there is no Error
Code or Message, 10 if there is an Error Code and no Error Message
or 10 + the length of the Error Message if there is an Error Code
and Message.
Defined Result Code values for the StopCCN message are:
0 - Reserved
1 - General request to clear control connection
2 - General error--Error Code indicates the problem
3 - Control channel already exists
4 - Requester is not authorized to establish a control
channel
5 - The protocol version of the requester is not
supported
Error Code indicates highest version supported
6 - Requester is being shut down
7 - Finite State Machine error
Defined Result Code values for the CDN message are:
0 - Reserved
1 - Call disconnected due to loss of carrier
2 - Call disconnected for the reason indicated
in error code
3 - Call disconnected for administrative reasons
4 - Call failed due to lack of appropriate facilities
being available (temporary condition)
5 - Call failed due to lack of appropriate facilities being
available (permanent condition)
6 - Invalid destination
7 - Call failed due to no carrier detected
8 - Call failed due to detection of a busy signal
9 - Call failed due to lack of a dial tone
10 - Call was not established within time allotted by LAC
11 - Call was connected but no appropriate framing was
detected
The Error Codes defined below pertain to types of errors that are
not specific to any particular L2TP request, but rather to
protocol or message format errors. If an L2TP reply indicates in
its Result Code that a general error occurred, the General Error
value should be examined to determine what the error was. The
currently defined General Error codes and their meanings are:
0 - No general error
1 - No control connection exists yet for this LAC-LNS pair
2 - Length is wrong
3 - One of the field values was out of range or
reserved field was non-zero
4 - Insufficient resources to handle this operation now
5 - The Session ID is invalid in this context
6 - A generic vendor-specific error occurred in the LAC
7 - Try another. If LAC is aware of other possible LNS
destinations, it should try one of them. This can be
used to guide an LAC based on LNS policy, for instance,
the existence of multilink PPP bundles.
8 - Session or tunnel was shutdown due to receipt of an unknown
AVP with the M-bit set (see section 4.2). The Error Message
SHOULD contain the attribute of the offending AVP in (human
readable) text form.
When a General Error Code of 6 is used, additional information
about the error SHOULD be included in the Error Message field.
4.4.3 Control Connection Management AVPs
Protocol Version (SCCRP, SCCRQ)
The Protocol Version AVP, Attribute Type 2, indicates the L2TP
protocol version of the sender.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Ver Rev
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Ver field is a 1 octet unsigned integer containing the value
1. Rev field is a 1 octet unsigned integer containing 0. This
pertains to L2TP protocol version 1, revision 0. Note this is not
the same version number that is included in the header of each
message.
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 1. The Length of this AVP is 8.
Framing Capabilities (SCCRP, SCCRQ)
The Framing Capabilities AVP, Attribute Type 3, provides the peer
with an indication of the types of framing that will be accepted
or requested by the sender.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved for future framing type definitions AS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Attribute Value field is a 32-bit mask, with two bits defined.
If bit A is set, asynchronous framing is supported. If bit S is
set, synchronous framing is supported.
A peer MUST NOT request an incoming or outgoing call with a
Framing Type AVP specifying a value not advertised in the Framing
Capabilities AVP it received during control connection
establishment. Attempts to do so will result in the call being
rejected.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) is 10.
Bearer Capabilities (SCCRP, SCCRQ)
The Bearer Capabilities AVP, Attribute Type 4, provides the peer
with an indication of the bearer device types supported by the
hardware interfaces of the sender for outgoing calls.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved for future bearer type definitions AD
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This is a 32-bit mask, with two bits defined. If bit A is set,
analog access is supported. If bit D is set, digital access is
supported.
An LNS should not request an outgoing call specifying a value in
the Bearer Type AVP for a device type not advertised in the Bearer
Capabilities AVP it received from the LAC during control
connection establishment. Attempts to do so will result in the
call being rejected.
This AVP MUST be present if the sender can place outgoing calls
when requested.
Note that an LNS that cannot act as an LAC as well will not
support hardware devices for handling incoming and outgoing calls
and should therefore set the A and D bits of this AVP to 0, or
should not send the AVP at all. An LNS that can also act as an LAC
and place outgoing calls should set A or D as appropriate.
Presence of this message is not a guarantee that a given outgoing
call will be placed by the sender if requested, just that the
physical capability exists.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) is 10.
Tie Breaker (SCCRQ)
The Tie Breaker AVP, Attribute Type 5, indicates that the sender
wishes a single tunnel to exist between the given LAC-LNS pair.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tie Break Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...(64 bits)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Tie Breaker Value is an 8 octet value that is used to choose a
single tunnel where both LAC and LNS request a tunnel
concurrently. The recipient of a SCCRQ must check to see if a
SCCRQ has been sent to the peer, and if so, must compare its Tie
Breaker value with the received one. The lower value "wins", and
the "loser" MUST silently discard its tunnel. In the case where a
tie breaker is present on both sides, and the value is equal, both
sides MUST discard their tunnels.
If a tie breaker is received, and an outstanding SCCRQ had no tie
breaker value, the initiator which included the Tie Breaker AVP
"wins". If neither side issues a tie breaker, then two separate
tunnels are opened.
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 0. The Length of this AVP is 14.
Firmware Revision (SCCRP, SCCRQ)
The Firmware Revision AVP, Attribute Type 6, indicates the
firmware revision of the issuing device.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Firmware Revision
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Firmware Revision is a 2 octet unsigned integer encoded in a
vendor specific format.
For devices which do not have a firmware revision (general purpose
computers running L2TP software modules, for instance), the
revision of the L2TP software module may be reported instead.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 0. The Length (before hiding) is 8.
Host Name (SCCRP, SCCRQ)
The Host Name AVP, Attribute Type 7, indicates the name of the
issuing LAC or LNS.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Host Name ... (arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Host Name is of arbitrary length, but MUST be at least 1
octet.
This name should be as broadly unique as possible; for hosts
participating in DNS [RFC1034], a hostname with fully qualified
domain would be appropriate.
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 1. The Length of this AVP is 6 plus the
length of the Host Name.
Vendor Name (SCCRP, SCCRQ)
The Vendor Name AVP, Attribute Type 8, contains a vendor specific
(possibly human readable) string describing the type of LAC or LNS
being used.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Vendor Name ...(arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Vendor Name is the indicated number of octets representing the
vendor string. Human readable text for this AVP MUST be provided
in the UTF-8 charset using the Default Language [RFC2277].
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 0. The Length (before hiding) of this AVP
is 6 plus the length of the Vendor Name.
Assigned Tunnel ID (SCCRP, SCCRQ, StopCCN)
The Assigned Tunnel ID AVP, Attribute Type 9, encodes the ID being
assigned to this tunnel by the sender.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Assigned Tunnel ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Assigned Tunnel ID is a 2 octet non-zero unsigned integer.
The Assigned Tunnel ID AVP establishes a value used to multiplex
and demultiplex multiple tunnels between the LNS and LAC. The L2TP
peer MUST place this value in the Tunnel ID header field of all
control and data messages that it subsequently transmits over the
associated tunnel. Before the Assigned Tunnel ID AVP is received
from a peer, messages MUST be sent to that peer with a Tunnel ID
value of 0 in the header of all control messages.
In the StopCCN control message, the Assigned Tunnel ID AVP MUST be
the same as the Assigned Tunnel ID AVP first sent to the receiving
peer, permitting the peer to identify the appropriate tunnel even
if a StopCCN is sent before an Assigned Tunnel ID AVP is received.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 8.
Receive Window Size (SCCRQ, SCCRP)
The Receive Window Size AVP, Attribute Type 10, specifies the
receive window size being offered to the remote peer.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Window Size
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Window Size is a 2 octet unsigned integer.
If absent, the peer must assume a Window Size of 4 for its
transmit window. The remote peer may send the specified number of
control messages before it must wait for an acknowledgment.
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 1. The Length of this AVP is 8.
Challenge (SCCRP, SCCRQ)
The Challenge AVP, Attribute Type 11, indicates that the issuing
peer wishes to authenticate the tunnel endpoints using a CHAP-
style authentication mechanism.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Challenge ... (arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Challenge is one or more octets of random data.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 6 plus the length of the Challenge.
Challenge Response (SCCCN, SCCRP)
The Response AVP, Attribute Type 13, provides a response to a
challenge received.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Response ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... (16 octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Response is a 16 octet value reflecting the CHAP-style
[RFC1994] response to the challenge.
This AVP MUST be present in an SCCRP or SCCCN if a challenge was
received in the preceding SCCRQ or SCCRP. For purposes of the ID
value in the CHAP response calculation, the value of the Message
Type AVP for this message is used (e.g. 2 for an SCCRP, and 3 for
an SCCCN).
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 22.
4.4.4 Call Management AVPs
Q.931 Cause Code (CDN)
The Q.931 Cause Code AVP, Attribute Type 12, is used to give
additional information in case of unsolicited call disconnection.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Cause Code Cause Msg Advisory Msg...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Cause Code is the returned Q.931 Cause code, and Cause Msg is the
returned Q.931 message code (e.g., DISCONNECT) associated with the
Cause Code. Both values are returned in their native ITU
encodings [DSS1]. An additional ASCII text Advisory Message may
also be included (presence indicated by the AVP Length) to further
explain the reason for disconnecting.
This AVP MUST NOT be hidden (the H-bit MUST be 0). The M-bit for
this AVP MUST be set to 1. The Length of this AVP is 9, plus the
size of the Advisory Message.
Assigned Session ID (CDN, ICRP, ICRQ, OCRP, OCRQ)
The Assigned Session ID AVP, Attribute Type 14, encodes the ID
being assigned to this session by the sender.
The Attribute Value field for this AVP has the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Assigned Session ID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Assigned Session ID is a 2 octet non-zero unsigned integer.
The Assigned Session ID AVP is establishes a value used to
multiplex and demultiplex data sent over a tunnel between the LNS
and LAC. The L2TP peer MUST place this value in the Session ID
header field of all control and data messages that it subsequently
transmits over the tunnel that belong to this session. Before the
Assigned Session ID AVP is received from a peer, messages MUST be
sent to that peer with a Session ID of 0 in the header of all
control messages.
In the CDN control message, the same Assigned Session ID AVP first
sent to the receiving peer is used, permitting the peer to
identify the appropriate tunnel even if CDN is sent before an
Assigned Session ID is received.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 8.
Call Serial Number (ICRQ, OCRQ)
The Call Serial Number AVP, Attribute Type 15, encodes an
identifier assigned by the LAC or LNS to this call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Call Serial Number
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Call Serial Number is a 32 bit value.
The Call Serial Number is intended to be an easy reference for
administrators on both ends of a tunnel to use when investigating
call failure problems. Call Serial Numbers should be set to
progressively increasing values, which are likely to be unique for
a significant period of time across all interconnected LNSs and
LACs.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Minimum BPS (OCRQ)
The Minimum BPS AVP, Attribute Type 16, encodes the lowest
acceptable line speed for this call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Minimum BPS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Minimum BPS is a 32 bit value indicates the speed in bits per
second.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Maximum BPS (OCRQ)
The Maximum BPS AVP, Attribute Type 17, encodes the highest
acceptable line speed for this call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Maximum BPS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Maximum BPS is a 32 bit value indicates the speed in bits per
second.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Bearer Type (ICRQ, OCRQ)
The Bearer Type AVP, Attribute Type 18, encodes the bearer type
for the incoming or outgoing call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved for future Bearer Types AD
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Bearer Type is a 32-bit bit mask, which indicates the bearer
capability of the call (ICRQ) or required for the call (OCRQ). If
set, bit A indicates that the call refers to an analog channel. If
set, bit D indicates that the call refers to a digital channel.
Both may be set, indicating that the call was either
indistinguishable, or can be placed on either type of channel.
Bits in the Value field of this AVP MUST only be set by the LNS
for an OCRQ if it was set in the Bearer Capabilities AVP received
from the LAC during control connection establishment.
It is valid to set neither the A nor D bits in an ICRQ. Such a
setting may indicate that the call was not received over a
physical link (e.g if the LAC and PPP are located in the same
subsystem).
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Framing Type (ICCN, OCCN, OCRQ)
The Framing Type AVP, Attribute Type 19, encodes the framing type
for the incoming or outgoing call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved for future Framing Types AS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Framing Type is a 32-bit mask, which indicates the type of PPP
framing requested for an OCRQ, or the type of PPP framing
negotiated for an OCCN or ICCN. The framing type MAY be used as an
indication to PPP on the LNS as to what link options to use for
LCP negotiation [RFC1662].
Bit A indicates asynchronous framing. Bit S indicates synchronous
framing. For an OCRQ, both may be set, indicating that either type
of framing may be used.
Bits in the Value field of this AVP MUST only be set by the LNS
for an OCRQ if it was set in the Framing Capabilities AVP received
from the LAC during control connection establishment.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Called Number (ICRQ, OCRQ)
The Called Number AVP, Attribute Type 21, encodes the telephone
number to be called for an OCRQ, and the Called number for an
ICRQ.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Called Number... (arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Called Number is an ASCII string. Contact between the
administrator of the LAC and the LNS may be necessary to
coordinate interpretation of the value needed in this AVP.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 6 plus the length of the Called Number.
Calling Number (ICRQ)
The Calling Number AVP, Attribute Type 22, encodes the originating
number for the incoming call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calling Number... (arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calling Number is an ASCII string. Contact between the
administrator of the LAC and the LNS may be necessary to
coordinate interpretation of the value in this AVP.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 6 plus the length of the Calling Number.
Sub-Address (ICRQ, OCRQ)
The Sub-Address AVP, Attribute Type 23, encodes additional dialing
information.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sub-Address ... (arbitrary number of octets)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Sub-Address is an ASCII string. Contact between the
administrator of the LAC and the LNS may be necessary to
coordinate interpretation of the value in this AVP.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 6 plus the length of the Sub-Address.
(Tx) Connect Speed (ICCN, OCCN)
The (Tx) Connect Speed BPS AVP, Attribute Type 24, encodes the
speed of the facility chosen for the connection attempt.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
BPS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The (Tx) Connect Speed BPS is a 4 octet value indicating the speed
in bits per second.
When the optional Rx Connect Speed AVP is present, the value in
this AVP represents the transmit connect speed, from the
perspective of the LAC (e.g. data flowing from the LAC to the
remote system). When the optional Rx Connect Speed AVP is NOT
present, the connection speed between the remote system and LAC is
assumed to be symmetric and is represented by the single value in
this AVP.
This AVP may be hidden (the H-bit may be 0 or 1). The M-bit for
this AVP MUST be set to 1. The Length (before hiding) of this AVP
is 10.
Rx Connect Speed (ICCN, OCCN)
The Rx Connect Speed AVP, Attribute Type 38, represents the speed
of the connection from the perspective of the LAC (e.g. data
flowing from the remote system to the LAC).
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
BPS (H) BPS (L)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
BPS is a 4 octet value indicating the speed in bits per second.
Presence of this AVP implies that the connection speed may be
asymmetric with respect to the transmit connect speed given in the
(Tx) Connect Speed AVP.
This AVP may be hidden (the H-bit MAY be 1 or 0). The M-bit for
this AVP MUST be set to 0. The Length (before hiding) of this AVP
is 10.
Physical Channel ID (ICRQ, OCRP)
The Physical Channel ID AVP, Attribute Type 25, encodes the vendor
specific physical channel number used for a call.
The Attribute Value field for this AVP has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9